
CHAPTER 4

Cyclic Groups

Properties of Cyclic Groups

Definition (Cyclic Group). A group G is called cyclic if 9 a 2 G 3��
G = hai = {an|n 2 Z}.

We say a is a generator of G. (A cyclic group may have many generators.)
Although the list . . . , a�2, a�1, a0, a1, a2, . . . has infinitely many entries, the
set {an|n 2 Z} may have only finitely many elements. Also, since

aiaj = ai+j = aj+i = ajai,

every cyclic group is Abelian.

Example. Z under addition is an infinite cyclic group.

Z = h1i = h�1i (1 and �1 are the only generators).

0 = 0 · 1 = 0 · (�1) (interpretation of 10 and (�1)0).

For n > 0, n = 1 + 1 + · · · + 1| {z }
n terms

(interpretation of 1n).

For n < 0, n = (�1) + (�1) + · · · + (�1)| {z }
|n| terms

(interpretation of (�1)n).

Example. Zn = {0, 1, 2, . . . , n � 1} with addition modulo n is a finite
cyclic group.

Zn = h1i = hn� 1i (Note n� 1 = �1 mod n).

Other generators are possible depending on n:

Z10 = h1i = h9i = h3i = h7i.
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Example. For U(12) = {1, 5, 7, 11},

h1i = {1}, h5i = {1, 5}, h7i = {1, 7}, h11i = {1, 11}.
Thus U(12) is not cyclic since none of its elements generate the group.

Theorem (4.1 — Criterion for ai = aj). Let G be a group and a 2 G.
If |a| = 1, then all distinct powers of a are distinct group elements (ai =
aj () i = j). If |a| < 1, say |a| = n, hai = {e, a, a2, . . . , an�1} and
ai = aj () n|i� j.

Proof.

(1) If |a| = 1, 6 9 n 2 Z+ 3�� an = e. Then

ai = aj () ai�j = e () i� j = 0 () i = j.

(2) Assume |a| < 1. [To show hai = {e, a, a2, . . . , an�1}.]

Clearly, e, a, a2, . . . , an�1 are distinct since |a| = n. For if ai = aj with
0  j < i  n� 1, then ai�j = e, contradicting that

n is the least positive integer such that an = e.

Now suppose ak 2 hai. Then

9 q, r 2 Z 3�� k = qn + r, 0  r < n. Then

ak = aqn+r = (an)qar = eqar = ar,

so ak 2 {e, a, a2, . . . , an�1} =) hai = {e, a, a2, . . . , an�1}.

(3) (=)) Suppose ai = aj. [To show n|i� j.] Then ai�j = e. Now

9 q, r 2 Z 3�� i� j = qn + r, 0  r < n, and so

e = ai�j = aqn+r = (an)qar = eqar = ar

Since n is the least positive integer such that an = e, r = 0, so n|i� j.

((=) If n|i� j, then 9 q 2 Z 3�� i� j = nq =)
ai�j = anq = (an)q = eq = e =) ai = aj.

⇤
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Corollary (1 — |a| = |hai|).
For any group element a, |a| = |hai|.

Corollary (2 — ak = e =) |a||k).

Let G be a group and let a be an element of order n in G. If ak = e, then
n divides k.

Proof.

Since ak = e = a0, by Theorem 4.1, n|k � 0 =) n|k. ⇤
Note.

Referring to Figure 4.1 on page 80 (shown below),

Theorem 4.1 says that multiplication in hai is essentially done by addition
modulo n, i.e., if (i+ j) mod n = k, then aiaj = ak. This is for any G and any
a. Multiplication in hai works like addition in Zn.

Similarly, if |a| = 1, multiplication in hai works like addition in Z since
aiaj = ai+j.

Thus Zn and Z are the prototypical cyclic groups.

How can one compute |ak| from |a| only? Also, how can one tell when haii =
haji?
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Theorem (4.2 — haki = hagcd(n,k)i and |ak| = n/ gcd(n, k)).

Let G be a group, a 2 G, |a| = n, and k 2 N. Then

haki = hagcd(n,k)i and |ak| =
n

gcd(n, k)
.

Proof.

(1) To simplify notation, let d = gcd(n, k) and k = dr. Since ak = (ad)r,
haki ✓ hadi.
Now 9 s, t 2 Z 3�� d = ns + kt. Then

ad = ans+kt = ansakt = (an)s(ak)t = e(ak)t = (ak)t 2 haki.
Thus hadi ✓ haki =) hadi = haki by mutual set inclusion.

(2) Since d|n, (ad)n/d = an = e, so |ad|  n

d
. But if i 2 N with i <

n

d
, then

(ad)i 6= e by the definition of |a|, so |ad| =
n

d
.Then

|ak| = |haki| = |hadi| = |ad| =
n

d
=

n

gcd(n, k)
.

⇤

Corollary (1 — Orders of Elements in Finite Cyclic Groups).

In a finite cyclic group, the order of an element divides the order of the
group.
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Corollary (2 — Criterion for haii = haji and |ai| = |aj|.).
Let |a| = n. Then haii = haji () gcd(n, i) = gcd(n, j), and |ai| =
|aj| () gcd(n, i) = gcd(n, j).

Proof.

(1) By Theorem 4.2, haii = hagcd(n,i)i and haji = hagcd(n,j)i.
Then haii = haji () hagcd(n,i)i = hagcd(n,j)i.
((=) gcd(n, i) = gcd(n, j) =) hagcd(n,i)i = hagcd(n,j)i =) haii = haji.
(=)) haii = haji =) hagcd(n,i)i = hagcd(n,j)i =) |agcd(n,i)| = |agcd(n,j)| =)

n

gcd(n, i)
=

n

gcd(n, j)
=) gcd(n, i) = gcd(n, j).

(2) Follows from the first part and Corollary 1 of Theorem 4.1. ⇤

Corollary (3 — Generators of Finite Cyclic Groups.).

Let |a| = n. Then hai = haji () gcd(n, j) = 1, and |a| = |haji| ()
gcd(n, j) = 1.

Note. Now, once one generator of a cyclic group is found, all generators
can then be easily determined.

Example.

U(25) = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24},

so |U(25)| = 20.

Now U(25) = h2i. By Corollary 3, the following are generators:
21 mod 25 = 2 213 mod 25 = 17
23 mod 25 = 8 217 mod 25 = 22
27 mod 25 = 3 219 mod 25 = 13
29 mod 25 = 12 221 mod 25 = 2
211 mod 25 = 23 223 mod 25 = 8

Thus U(25) = h2i = h3i = h8i = h12i = h13i = h17i = h22i = h23i.
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Corollary (4 — Generators of Zn).

An integer k 2 Zn is a generator of Zn () gcd(n, k) = 1.

Problem (Page 87 # 10). (1) In Z24, list all generators for the subgroup of
order 8. (2) Let G = hai and let |a| = 24. List all generators of the subgroup
of order 8.

Solution.

(1) h3i = {0, 3, 6, 9, 12, 15, 18, 21} has order 8.

From Corollary 3, the generators are 1 · 3, 3 · 3, 5 · 3, 7 · 3 or 3, 9, 15, 21.

(2) ha3i = {e, a3, a6, a9, a12, a15, a18, a21} has order 8.

From Corollary 3, the generators are (a3)1, (a3)3, (a3)5, (a3)7 or a3, a9, a15, a21.
⇤

Classification of Subgroups of Cyclic Groups

Theorem (4.3 — Fundamental Theorem of Cyclic Groups).

Every subgroup of a cyclic group is cyclic. Moreover, if |hai| = n, then
the order of any subgroup of hai is a divisor of n; and, for each positive
divisor k of n, the group hai has exactly one subgroup of order k—namely
han/ki.

Example. Suppose G = hai and |G| = 42. By the Theorem 4.3, if
H  G, H = ha42/ki where k|42. Also, G has one subgroup of the orders
1, 2, 3, 6, 7, 14, 21, 42, and no others. The proof of the theorem shows how to
find these subgroups.
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Proof.

(1) Let G = hai and suppose H  G. [To show H is cyclic.] If H = {e}, H
is cyclic. Assume H 6= {e}. Since G = hai, every element of H has the form
at. If t < 0, a�t 2 H and �t is positive. Thus H contains an element at with
t > 0. Let m be the least positive integer such that am 2 H (guaranteed by
the Well-Ordering Principle). By closure, hami ✓ H.

[To show hami = H.] Suppose b 2 H. Then b 2 G =) 9 k 2 G 3�� b = ak.
Then 9 q, r 2 Z 3�� k = mq + r, 0  r < m.

[To show r = 0.] Then ak = amq+r = amqar =) ar = aka�mq. Since
ak = b 2 H and a�mq = (am)�q 2 H, ar 2 H. But m is the least positive
integer 3�� am 2 H, and 0  r < m, so r = 0. Thus

b = ak = amq = (am)q 2 hami,
so H  hami. By mutual inclusion, hami = H, and so H is cyclic.

(2) Suppose |hai| = n and H  G. Then, from (1), H = hami for some
m 2 Z. Since (am)n = (an)m = em = e, from Corollary 2 of Theorem 4.1,
|am|

��n. Thus|H|
��n.

(3) Let k 2 N 3�� k|n. [To show han/ki is the unique subgroup of hai of order
k.] By Theorem 4.2,

|han/ki| =
n

gcd(n, n
k)

=
n
n
k

= k.

Now let H  hai with |H| = k. From (1) and (2), H = hami and m|n. Then
m = gcd(n,m) and

k = |am| = |agcd(n,m)| =
n

gcd(n,m)
=

n

m
.

Thus m =
n

k
and H = han/ki. ⇤
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Corollary (Subgroups of Zn). For each k 2 N 3�� k|n, the set
Dn

k

E
is the unique subgroup of Zn of order k; moreover, these are the only
subgroups of Zn.

Proof.

Apply Theorem 4.3 with G = Zn and a = 1. ⇤

Example.

|hai| = 42 Z42 order

hai = {e, a, a2, . . . , a41} h1i = {0, 1, 2, . . . , 41} 42
ha2i = {e, a2, a4, . . . , a40} h2i = {0, 2, 4, . . . , 40} 21
ha3i = {e, a3, a6, . . . , a39} h3i = {0, 3, 6, . . . , 39} 14
ha6i = {e, a6, a12, . . . , a36} h6i = {0, 6, 12, . . . , 36} 7
ha7i = {e, a7, a14, . . . , a35} h7i = {0, 7, 14, . . . , 35} 6
ha14i = {e, a14, a28} h14i = {0, 14, 28} 3
ha21i = {e, a21} h21i = {0, 21} 2
ha42i = {e} h42i = {0} 2

This is an example of isomorphic groups, groups with exactly the same struc-
ture.

Definition. The Euler Phi function is defined by �(1) = 1 and, for n > 1,
�(1) is the number of positive integers less than n and relatively prime to n.

Corollary. 8n > 1, |U(n)| = �(n).

Note. Some values of �(n) are found in Table 4.1 on page 84 of the text.
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Theorem (4.4 — Number of Elements of Each Order of a Cyclic Group).

If d is a positive divisor of n, the number of elements of order d in a cyclic
group of order n is �(d).

Proof.

By Theorem 4.3 9 exactly one subgroup of order d — say hai. Then every
element of order d generates hai. By Corollary 3 of Theorem 5.2, an element ak

generates hai () gcd(k, d) = 1. The number of such elements is �(d). ⇤

Note. For a finite cyclic group of order n, this means the number of elements
of order d where d|n depends only on d.

Example. Z7, Z490, and Z7000 each has �(7) = 6 elements of order 7.

Corollary (Number of Elements of Order d in a Finite Group).

In a finite group (not necessarily cyclic), the number of elements of order
d is divisible by �(d).

Proof.

Let G be a finite group. If G has no elements of order d, �(d)|0. So suppose
a 2 G with |a| = d. By Theorem 4.4, hai had �(d) elements of order d. If all
elements of order d are in hai, we are done.

So suppose b 2 G, |b| = d, b 62 hai. Then hbi also has �(d) elements of order
d. Thus, if hai and hbi have no elements of order d in common, we have found
2�(d) elements of order d. If |c| = d and c 2 hai

T
hbi, hai = hci = hbi, a

contradiction.

Continuing, the number of elements of order d is a multiple of �(d). ⇤
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Subgroup Lattice for Z42.

Problem (Page 89 # 35 (Adjusted)). Determine the subgroup lattices for
Zpn and hai with |a| = pn, where p is a prime and n is some positive integer.
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Subgroup Lattice for Zpq2, where p and q are distinct primes.

Corresponding Subgroup Lattice for hai, where |a| = pq2 and p and q are
distinct primes.
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Example. How many elements of order 4 does D12 have? How many ele-
ments of order 4 does D4n have?

Solution. Consider D4n. Since all reflections have order 2, elements of
order 4 must be rotations and elements of hR360/4ni where |hR360/4ni| = 4n.
Since 4|4n, by Theorem 4.4, the number of elements of order 4 is �(4) = 2. For
D12, just let n = 3. ⇤

Note. Cyclic groups will later be shown to be building blocks for all Abelian
groups in much the same way as primes are building blocks for the integers.

Maple. See cyclic.mw or cyclic.pdf.


